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EVALUATION OF THE GENERALIZED QM FUNCTION
FOR COMPLEX ARGUMENTS

INTRODUCTION

The generalized QM function is defined as (reference 1 and reference 2, section VII,
equation 2.18)

QM (a,b)= fdx x exp (a x). (
b

Typically, Mis an integer, while parameters a and b are real and nonnegative. Numerous
integrals involving the QM (a, b) function are available in references 3 and 4. Also, a
generalization to a general power of (x/a), as well as a general order of the modified Bessel
function I, was made in references 3 and 5. Numerical evaluation of QM (a, b) for large values
of arguments a and/or b is often plagued by underflow or overflow, due to the presence of
exponentials with large positive or negative real arguments. Furthermore, in recent applications
to active sonar processing (references 6 and 7), the need for evaluation of QM (a, b) with
complex arguments a and b was encountered; in particular, the joint probability density function
of the M - 1 largest envelope-squared values from a matched filter and the sum of the remainder
required exactly this quantity QM (a, b). However, the usual series expansions for QM (a, b) can
now contain powers of large complex numbers, thereby destroying any significance in the final
result, due to cancellations of large positive and negative values of the real and imaginary
components of the terms in the series.

To construct a viable routine for evaluation of QM (a, b) with arbitrary complex arguments,
a study of several possibilities was undertaken. The study begins with an investigation of the
basic statistics of non-central chi-squared random variables (RVs), and progresses into the realm
of probability density functions (PDFs), cumulative distribution functions (CDFs), and
exceedance distribution functions (EDFs), where the QM (a, b) function is encountered.



STATISTICS OF NON-CENTRAL CHI-SQUARED RANDOM VARIABLES

Let {g(k)} be a set of independent Gaussian RVs with means {p(k)} and standard
deviations {o(k)}, for k = 1: K. Then, the RVs

y(k) = g(k) 2 for k=1:K (2)

have the moment-generating functions (MGFs)

Py(k)(A) = E{exp(ity(k))} = E{exp(Ag(k) 2 )} = idu exp(Au 2) 2 (k) exp( 2o(k)2 )
/ (3)

exp (k)2 'Z for Re(A) < k = 1:K.=(-2-k i)lze p £•k) 2
___

-2c(k) 2 2'(k

The non-central chi-squared RV of interest here is given by the sum

K K

s= y(k)= g(k)2 . (4)
k=l k=1

The MGF of sum s follows from equation (3) and the independence of RVs {g(k)} as

S(A= 2)1/2 exf1/ K p(k) 2 A < 1 (5)

'()=-(1 - 2 o-(k)2 )-2n exp E 2o.(k) 2  for Re(2) max{o(k) 2}
k=1 k=1 -ckA2maja)

SPECIAL CASE

Let the standard deviations of all the original Gaussian RVs {g(k)} be equal; that is,

o.(k)=o for k=1:K. (6)

Then, the MGF in equation (5) simplifies to

p,(A)= (I2o. 2 2)-K/ 2 expr M2A- for Re(A) < 2 (7)

where

K
m2 - Z"/(k)2 (8)

k=I

2



2Observe that the statistics of non-central chi-squared RV s depend only on the sum m of the
squares of the means, {,u(k)}, of the individual Gaussian RVs {g(k)} when equation (6) is true.

The PDF of RV s, corresponding to MGF (7), is

p,(u)=p(u;K,m,-)= 1 2  M- exp --- IMI ( for u>0, m>0, (9)2 02 a M 2 U2-

where

M 2 m= K(k)2 (10)
2 k=1

M need not be an integer. A better numerical alternative to equation (9) is

P,(U)2. (20.2 e. m M- I u for u>0, m>0, (11)

because the well-behaved combination

exp(-x) IM - (x) -besseli(M- 1, x,1) (12)

is directly available as a MATLAB function. For m = 0, equation (11) reduces to

P (u) = UM) exp y 2- for u > 0. (13)
F(M) (2') m (2U2)

The EDF for RV s in equation (4) is, upon use of equations (9) and (1),

e.(u) = Prob(s > u) = fdt pj(t) = Q for u >0. (14)

Thej-th cumulant of RV s is

zS(j)=j! +- 2  (2oa2)j for j=l,2,..., (15)

while the v -th moment of RV s is

3



Efsv}=(2C2 ), F(M)1 -V;M;- (16)

in terms of a confluent hypergeometric function. For v equal to an integer j, this result

simplifies to

E{s}= j! (2t0-2). L(m-m) 2 } (17)

where the latter function is a Laguerre polynomial.

An alternative RV of interest is the square root of the sum of squares of the Gaussian RVs,

namely, non-central chi-variate

e= 'ý=f g(k) 2 " (18)

For the case of equal Gaussian standard deviations, equation (6), the PDF of RV e follows from
equation (9) as

Pe(u 2 UPs(u) t- 1 exp 2 2) Im for u>O, m>O. (19)

The corresponding EDF and CDF are, respectively,

ee(u) =QM, mju u cu)=l-e(u)=l-Qm Muj-ý-j foru>0, (20)

where qm is the complementary QM function. A better numerical alternative to equation (19) is

Pe (u) = - -1 exp (u-_ M)2 exp U for u>O, m>0; (21)
2•u U2 M- exp 20.2(7

see equation (12). For m = 0, equation (21) reduces to

& -(u) -2u-2M- exp u 2 ) for u > 0. (22)
4F( ) -2 02)M 2 o.2

4



DETERMINATION OF THE MIXTURE FUNCTION

A mixture of a CDF and an MGF was defined in reference 6, equation (3), namely,

c(u, 2) = Jdx p(x) exp(2 x), (23)

where p(x) is a PDF. That is, c(u,O) is the usual CDF, while c(+oo, A) is the usual MGF.
Variable u is real, while 2 can be complex. For the non-central chi-squared RV s defined in
equation (4), the mixture function is given by equations (23) and (9) as

U

c' (u, 2) = f dx p. (x) exp(2 x)
0 2/ (24)

exp(-r 2m2)i dx x(Ml-)/ 2 exp _X-m2 A)- M .M ) for u > O,

where

M = --, r -= ,(k) 2 . (25)
2 " k=1

Upon making the substitution x = t2 in equation (24), there follows

c, (u, A) = c(u,A; K,m, a) ep- r /2) M __tmx t2

2 U rn M- 0 e (I t2(0-2 2  (26)
1l (r2, l_ hhf I-

h exp _ I)) qM u for all2 2 u >O,

which follows directly from definitions (1) and (20), and auxiliary definitions

K rn 1I
M= -,- /,Lk)2, h=h(2,-)= 1-20- . (27)2(72 0" 0- k=l

1
The special case of 2 - is presented later; see equation (57).

As partial checks on relation (26), there follows c, (0, 2) = 0, upon use of qm (a,0) = 0.
Also, c. (u,O) = qM (r, V-U) = 1- e, (u), which is in agreement with equation (20). Finally,

5



c, (+oo, A) reduces to the MGF in equation (7), using qm (a,+oo) = 1. Result (26) has been
checked numerically against the integral relation (24).

Another quantity of interest is

Ce (u,'A') ---a-C c.(u,2A) = dx x p,(x) exp(A x), (28)
0

by reference to equation (24). By making the change of variable x =t 2 and referring to the top
line of equation (26), there follows

u-,rl2 (-1/2) t M+2 exp -t 2  1 (90IUAI=-, 2tt2 2x I M_I( . (29)
rn_1  f 2U2a

At this point, the integral result

bdx xM+2 expr P2X2 Im-l(aIx) = a m-]+4 (a 2 +2MP2 ) expa 2 qm (abp (0 
P2p 

Pq (30)p4 exp( _ 2bj [a M(ab)+bp2 (ab

b M4_ 2(ab+bp

is used, with the end result (after some manipulations)

cs(u,2,1) = a ex _ r2 +2Mh2 exp(rj2 rh4h 2M exp T q -,hv
vM I ~2 2)(1

(31
r+Aexp(! 2[rM(rv)h2vlm (rv)] for2• u>0, m>0,

with

M K m 1I 4•
M 2= , r=--- =- (k)=, h=h(A,0.)= 1-2. 22, v (32)2 U U

The result in equation (31) has been checked numerically against the integral relation (29).

6



SADDLEPOINT LOCATION FOR MGF (7)

The logarithm of MGF u (2) in equation (7) is

m 22
zx(2) = log'Us (2) = _K log(l - 2o-22)+ for Re(A) <+- (33)

2 1-2" 22 e 2 -2 (

The derivative of this quantity is

2 22 1
z•(2) = Ko 2 yY= 1- y -. (34)

The saddlepoint (SP) location 2o is given by the solution of the equation

x=zs(2o)=Ko'2 y+m 2Y2  (35)

where x is the field point of interest in the PDF P,. Solving the quadratic equation (35) for Yo
and then solving the second term of equation (34) for the SP gives

ý2x U
= ( =---(X = 1 .... 2m2 C2 U 12 K2oa+4m2x+K-2J.(3 6 )20~ ~ J a°x = 0ý K04 +mxK0-2 2x

This is an explicit relation for the SP location in terms of field point x. As x tends to zero, 2o
tends to - oo, while as x gets large, 20 tends to 1/(2 "2) -. The actual saddlepoint approximation
to the non-central chi-squared PDF at field point x is

P ()/(2 0 ) exp(-2o x) 2 (37)

where

z:(2)= 2K0-4y 2 +4m 2 0U2y 3  (38)

from equation (34).

7



EVALUATION OF FUNCTION QM(a,b) FOR M A SMALL HALF-INTEGER

The evaluation of QM (a, b), defined in equation (1), is simpler when M is a half-integer,
that is, when the number K of RVs added, is odd; see equations (4) and (10). For M= 1/2, the
Bessel function in equation (1) is given by reference 8, equation 10.2.14, as

I-1/2(z) = --•z ) 12cosh(z). (39)

Substitution in equation (1) immediately leads to the result

Q112 (a,b)= D(a-b)+cI(-a-b), ql1 2 (a,b) =1-Q,1 2 (a,b) =D(b-a)-C(-a-b), (40)

where

(D(z) =(2;)-1 /2 f dt exp(- t2/2) = (2Z)-112 f dt exp(-t 2 /2) (41)
-00 -z

is the normalized Gaussian CDF. The values of QM(ab) for M= 1.5, 2.5, 3.5 ... can then be
found from reference 4, equation (3), top line, which does not require M to be an integer. The
required values of the Bessel functions are available in reference 8, equation 10.2.13. The end
results are

- ex(a- +b2'sinhab)

Q312(a,b) = Q112(ab)+ 2 sinh(a b)

2 Ia2 +b 2 ab cosh(a b) -sinh(a b) (2

Q5 12(a,b) = Q3/2(a,b)+ exp a 2  3 (42)

S ( a2 +b 2 (3+a 2b2 )sinh(ab)-3abcosh(ab)
Q712(a,b) = Q5 12 (a,b) + exp 5

7r 2) a

The quantity qM (a, b) appears in equations (26) and (31). Then, numerically, the second
result in equation (40) is more appropriate, and the top line of equation (42) can be modified to

a a2+ b 2sinh(ab) (3

q312 (a,b) = q,12 (a,b)- exp (43)

along with obvious changes to the other two relations. This procedure avoids the subtraction of

QM from unity and retains more accurate numerical results.

8



All three results in equation (42) have removable singularities at a = 0. The special values
there are

Q3/2 (0, b) = 2 11(-b) + exp --- b,

Q5 1z(O,b) =Q 312(O,b)+ 2x - -- ,(44)
2)

Q712(O,b) = Q512(0,b) + exp--- -

However, the last two results in equation (42) have numerical problems when product a b is
near zero, due to the differences of nearly-equal quantities in the numerators. Power series
expansions are required for the last two results in equation (42); they are

Z3 Z5 Z7 Z9 11 13z3 z z7 z9 z1 z
z cosh(z) - sinh(z) -- + -- +±- + +

3 30 840 45360 3991680 518918400 (45)
Z5 Z7 Z9 Z11 13 Z15z5 z7 z z" z1 zl

(3 + z2) sinh(z) - 3 z cosh(z) - + - + - + +- +- +
15 210 7560 498960 51891840 7783776000

A MATLAB program, QMhalfinteger(M,a,b), has been written that incorporates all these
features, at least up to M= 7/2. Although a recursion based on reference 4, equation (3), may
seem attractive, it is not useful for small a, as may be seen from the low-order results in equation
(42) above, where successively higher powers of parameter a appear in the denominator. The
recursion inevitably encounters differences of like quantities, which are then divided by very
small quantities, resulting in severe losses of significance in the final results. Nothing in a
recursion can avoid the required switch to a power series (45) for small arguments.

SERIES EVALUATION OF qM(a,b) FOR M INTEGER

The series expansion

Ak k+iM-1B a2 b

QM(ab)=exp(-A-B) - n' A - ,B=-6)
k=0 k ,=0 ! 2 2

was derived in reference 4, equation (8), by expanding the Bessel function Im_• (a x) in equation
(1) in a power series and integrating term by term. By expressing the inner sum on n as the
difference between a sum to infinity and a sum from k + M to infinity, equation (46) easily yields

9



00- k n B

q,(ab) = l-Q,(ab) = exp(-A- B) I - 1 (47)
k=0 n=k n!

Upon interchanging the two summations, the following alternatives are obtained:

B" n' Ak BM B' . Ak
qm (a,'b) = exp(-A4 - B),I- I - = exp(-A- B) -L - -. (48)

qn(a n)!exp(-A-B M!M j= (M + 1) j k = k

The last form involves only one infinite sum, all the terms of which are very amenable to

evaluation by way of recursions. Also, for a and b real, every quantity is nonnegative.
However, if a or b is complex, positive and negative quantities will occur in equation (48), and
all significance can be lost in the final sum. Equation (27) indicates that if A is complex, then

h = h(A, o) will be complex, and the qm (a, b) term in equation (26) will have to be evaluated
for complex arguments a and b.

When Ibi is large relative to ai, a useful alternative to the above series expansions is

afforded by equation (4) of reference 4:

QM(a,b) = 3 exp-I (b-a)2j0 exp(-ab) fIl -M(ab). (49)

The magnitudes of both terms in the sum eventually decrease with n; see reference 8, page 428.
The useful combination in equation (12) is encountered again in this form.

Conversely, when ja is larger than Ibl, equation (5) of reference 4 yields

qm (a,b) = exp -I (b - a)2 b exp(-ab) I,+M (ab). (50)
1O0

10



JOINT PROBABILITY DENSITY FUNCTION OF J- 1 LARGEST RANDOM
VARIABLES AND THE SUM OF THE REMAINDER OF A

SET OF N INDEPENDENT RANDOM VARIABLES

The joint PDF of the J - 1 largest RVs and the sum of the remainder of a set of N
independent RVs {s, } is presented in reference 7-in particular, see equations (15), (28), (38),
and (47), for J = 2, 3, 4, and 5, respectively. The PDFs {pn (x)} of the N independent RVs {sn }
are arbitrary in all these cases.

NON-CENTRAL CHI-SQUARED RANDOM VARIABLES

Let the n-th independent RV sn be given by

K.
sn=Egn(k)2 for n=1:N, (51)

k=1

where independent Gaussian RVs

g, (k) = Normal{fn (k), an } for k = 1 :Kn, n = 1: N. (52)

Notice that standard deviation an is independent of k. Then, as shown in equation (9), the PDF
ofRV s, is

1) ( )tn 1 exp tn +r2  IM,-(ru tn) for u >0, mn >0, (53)
Pn (U) -r Ps(U)= 2 02r-----n•1

where

M_ Kn r mn •Mn y an ,Lnk)2 1, = tn for n=1:N. (54)
2 ( k=l an an

Also, from equation (26), the mixture function of RV sn is

1 ( 1 1 I 1
(A)2M, exp - 1n - 2 fo l 2 u>-2' 55

hn(2) M n (n (A) an 2n

where

hn(A)=h(2,an)= 1-2an2A for n=1:N. (56)

11



For A = 2, h. (2) = 0 and equation (55) reduces to2 0n

t ,2 r ) =, e-xp( 
> .

c.uý'- ; IM rf Žj u>0, m" > 0. (57)

For m, = 0, this reduces further tot u, = I (2U ) , u>0. (58)t, 2 ) M!2o

Interest is centered here on the situation where Na of the Ka sets of N independent
Gaussian RVs in equation (52) have a common mean and standard deviation, namely,

g,(k) = Normal{tua(k),0-o} for k = 1 :Ka, n=1 : N , (59)

while the remaining Kb sets of Nb = N - Na independent Gaussian RVs have a different
common mean and standard deviation:

g9 (k) = Normal{Pb (k),0b} for k = 1: Kb, n =Na+1:N. (60)

Then, from equation (8),

ma = P a(k)2 m/ , n= ( p(k)2 .
(61)

\k=1l=

The corresponding PDF and mixture function of RVs {s, }, n = 1: Na, are, respectively,

1 (J exp~- .I_ r _1 ,
Pa(u) = p(u;Ka'ma'0a) K - F- exp 0-U rr.l-2

(62)
12r~ 1 h (r -I(2

Ca(UA) = c(u,A;Ka,ma,0-) _ 2 (1 - ( r, Ma )

2o . x) 2 ha(A) h,(A)'

for u > 0 and n = 1: Na, where

Ma K> ram° h= a(A) h(2,0a-)= -1 2-27,2A (63)
2 Ca

For RVs {s,, }, n = Na +1: N, replace all the subscripts a by b in equations (62) and (63).
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JOINT PDF OF LARGEST RANDOM VARIABLE AND
SUM OF REMAINDER

The first case of interest is given by equations (15) and (16) of reference 7; namely, the joint
PDF is, for J = 2,

1 N p.(z) (4
q2(z]I'Z2)- c d2 exp(-Az 2 ) P(Zl,2). AI (z])(( 2) c n=1 c(6z4))

where product

N

P(z 1 ',A) = 17 c(Zl'3`) = Ca(Z]'3`)N. Cb(ZlA)Nb (65)
n=1

and sum
-I P_(z__N P,(Z1 ) Pb(Zl)

pC0-z 1 ) --N0  +-Nb " (66)
1C(ZA) Ca(ZlA') Cb (ZI ,I)

Bromwich contour C in equation (64) runs from - ioo to + ioo in the complex A plane. For
numerical accuracy, this contour C can be moved so as to pass through the (unique real) SP A,
of the integrand of equation (64); of course, this SP location depends on the particular two-
dimensional field point (zl , z 2 ) of interest, that is, A, = A, (z I, z 2 ). This SP location must be
recalculated every time the two-dimensional field point is changed.

JOINT PDF OF TWO LARGEST RANDOM VARIABLES AND
SUM OF REMAINDER

This result is available from reference 7, equations (28) through (30); namely, the joint PDF
is, for J = 3,

q3 (zl ,z 2 ,z 3) = U(z1 - z 2) f dA exp(-A z3) P(z 2,A) (S1 S2 -S3), (67)i2;T c

where product

N

P(Z 2 , /) = fl Cn(Z 2,IA)= C,(Z 2,9A)N_ Cb(Z 2 "Z)Nb (68)
n1=1

and sums

13



S, = Na P,(Z.) + Nb Pb(ZI) , 2 - No P'(Z2 ) ±Nb Pb(Z2 )
Ca(Z2 , 2 ) Cb(Z 2 ,)'I Cao(Z2 ,I) cb(z2,2()

Pa, (Z.) Pa (Z 2 ) Pb (Z]) Pb (Z2)S Na + b

Ca (Z2 5)2 Cb (Z2,A)2

The comments under equation (66) are again directly relevant, except that the field point
(zI , z 2 , z3) in equation (67) is now three-dimensional.

The extensions to larger values of J are given in reference 7, equations (38) through (42) for

J = 4, equations (47) through (50) for J = 5, and equation (51) for the general case.
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EVALUATION OF THE Q FUNCTION FOR ALL REAL ARGUMENTS

In this section, attention is limited to the case M = 1. Then, equation (1) reduces to

Q(a,b) = dx x exp_ x I0 (a x). (70)
b

Although this function is analytic in each of the variables a and b, initial interest here is in
numerical evaluation of Q(a, b) only for nonnegative real a, b for all ranges of their values. One
of the problems associated with this evaluation is that underflow and/or overflow frequently
occur for large arguments, and all significance is lost. A method will be presented that isolates

the underflow/overflow problem and allows for the calculation of Q or log(Q) for all arguments.
Even when Q underflows or overflows the capability of the computer, log(Q) still retains
significance. This situation is analogous to the gamma function F(x), where both F(x) and
log(F(x)) are furnished by a computer, to circumvent overflow.

In addition, the complementary Q function now becomes

q(a,b) =l-Q(a,b)= dxxexpx- I (ax). (71)
0 2)

When Q approaches 1 so closely that all significance is lost, the complementary q function still
retains significance. Again, since q could also underflow, there is interest in computing both q
and log(q) for all a, b. This situation is similar to that where both the error function, erf(x), and
the complementary error function, erfc(x) = l-erf(x), are furnished by a computer. The Q
function is an exceedance probability, while the q function is a cumulative probability of a
normalized Rician random variate, as noted in an earlier section.

In reference 3, equation (74), the following integral result was presented:

I a 1=Q1I I a )io( __fl2i
dx1 exp -ficsx 2,ra+(u))-exp I 2 (72)0 z- 1 u l c sx

for 8 < 1, with u = C- -2. By making appropriate changes of variables, this result can be
manipulated into the following forms (reference 5, equation 18)

Q(a,b)=I+E, q(a,b)=1-Q(a,b) fora < b, (73)

and
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q(a,b)=I-E, Q(a,b)=1-q(a,b) fora >b, (74)

where

I( C1 (a2-b2a2  2ab
2;' p f Iccos(x) ' c 2-a 2 -) c2 2+2

0 2 2(aa2b

exp 0 (a b).75)
2

A useful alternative to the latter term is

E = exp -- exp(-a b) I0 (a b), (76)

in that the product exp(-x) I0 (x) is very well behaved for all real nonnegative x, decaying as1 / V2 zrx for large x. In fact, this product is denoted as besseli(O,x, 1) in MATLAB. Thus, all
the underflow problems associated with E are isolated in the leading exponential.

At the same time, integral I in equation (75) can be expressed as
I=ex( Ccl 1) Ic dx exp c1 c 2  1+ cos(x)

ep 1 )+c e2 2c i- C2  ccs(x)), (77)

for which the maximum value of the integrand is 1 at x = )r. Now, by employing the definitions
in equation (75), this expression takes the form

J ~ (apr -(b)2 LI ex ) r -aab)
2  1+ cos(x)exp dx exp a2 +b2  - ccos(x) (78)

Again, the exact same leading exponential accounts for all the underflow problems associated
with I. The integrand of equation (78) increases monotonically over the interval (0,;), ending
up at value 1, and cannot lead to underflow.

For computational purposes, define the parameters

tl--(a-b) 2, t2 =ab, t 3 a 2 + t4 =tlt3" (79)2 a 2 ±b 2 '

Then, from equations (78) and (76), there follows
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1i~ ~ (lcos x
I = exp(-t,) - t3 cos(x)

2 z 11+3 cos(x) (80)
1

E = exp(-tl) - exp(-t 2) 10 (t 2).
2

Therefore, the two primary terms needed in equations (73) and (74) can be written as

2I I E=x-1-t 3 cos(X) 2

where all the underflow issues are concentrated in one term, exp(-t 1 ). This immediately leads to

t4 cos(x) ±2 )I t

log(I+±E) =-t1 +lo dx ex t4 +-tc---os(x))- 1p(t )I°]2 (82)

which will not underflow for any ab. The complementary quantities in equations (73) and (74)
are then available upon subtraction of equation (81) from 1. At least one of the four quantities

Q, q, log(Q), log(q) (83)

will retain significance for all values of a, b.

A MATLAB routine was written for evaluation of the four quantities in equation (83), and is
called according to

[Q, q, Q log, q log] = Qq log(a, b) (84)

The time-consuming portion of this procedure is the numerical evaluation of the integral in
equation (82). The major problem is that the monotonic integrand in equation (82), namely,

exp 1 + cos(x) ) (85)g~x) - exp -t 1t3 cos(x)'

varies from g(O) = exp(- 2 t 4 /(l - t3 ))= exp(-2 a b) to g(7r) = 1, and can do so in a very narrow
interval in x. This can sometimes cause the routine in equation (84) to expend a great deal of
time achieving a stable estimate of the integral required in equation (82). Integrand g(x) does
not have a peak anywhere in (0,i-); however, g(x) can have a narrow transition range for its
values, which impedes quick evaluation of the integral. This sampling problem has been
circumvented by resorting to MATLAB's quad or quadf routines, which employ an adaptive
Simpson's rule that resorts to finer sampling where the integrand varies most rapidly.
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In an effort to ameliorate this rapid transition of g(x), an integrand of similar shape was

constructed, namely,

I+cos(x)• 2x~4 t4 (6
h(x) - exp(- t4 1 - cos(x)) exp(t1 exp(- 1cos(x)) (86)

Its integral is available in closed form (reference 3, equation (75)):

0 17 1cs~ 2 trfc#*I1 fdx h(x)= -exp(t 4) dx expxpt4) erfc(t)-4) erfcx(\/4), (87)27c 0 2- ir01-osx 2

where the last function is an available MATLAB routine. The function erfcx(x) is well behaved

for all positive real x and decays as 1/(V/ x) for large x.

The pertinent integral in equations (80) through (82) can now be expressed as

I- ; I )-
- dxg(x)=- -J dx [g(x) - h(x)] + - erfcx(Vt 4 ), (88)
2 o0  2f 0  2

leaving the major numerical problem as

I Z I + cos(x) ( 1+ cos(x) " (89)

2T Idx w(x), w(x) =- g(x) - h(x) = exp t4 - t 3 cos(x)) -cos(x)

The difference function w(x) has the special values

w(0) = exp(-2 a b), w(ff/ 2 ) = 0, w(;f) = 0, (90)

indicating that a major portion of function g(x) has been accounted for, by means of function h(x)

defined in equation (86). Integral (89) is also a good candidate for MATLAB's quad or quadt
routines.

EVALUATION OF Q(ab) FOR COMPLEX ARGUMENTS

The integrand in equation (85) can be extended to the complex z-plane by analytic
continuation:

g(z) = 1P 4 + cos(z) (91)
8t3 cos(z)
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The function g(z) has an essential singularity (ES) where

2ab

coS(Zo)=l/t 3 , = acos(1/t 3 ), t 3  2+b (92)

However, this complex value z, is only the principal value location of the ESs of g(z). The
totality of ESs of g(z) are located at

zo +27-n and -zo +2ffn, n = 0, + 1, + 2,.... (93)

Principal value zo has a real part that always lies in the interval [O,z]. Therefore, the only ESs
that can affect the integration over [0,z] in equation (82) are those at

± zo and ± zo + 2 7r. (94)

If input arguments a and b are real, positive, and unequal, then t3 is real and less than 1, and

zo = acos(1/t 3)= i acosh(1/t3 ), (95)

which lies on the imaginary axis of the z-plane. Another ES lies at - zo. Therefore, the path of
integration in equation (82) starts out perpendicular to the line between the two ESs on the
imaginary axis. This path is the best way of avoiding the neighborhoods of the two closest ESs,
and yet begin the integration at z = 0. The two other ESs in equation (94) are located above and
below 27r in the z-plane and do not significantly affect the integrand in the interval [0,7r].

On the other hand, when either input argument a and b is complex, principal value location
zo in equation (92) can have a real part that approaches r.. Then, the real part of 2 Ir - zo also
approaches 7., thereby possibly leading to two ESs close to the end of the path of integration at
z = ir. To try to stay away from the immediate neighborhoods of these ESs, the following
modification of the path of integration in the z-plane is suggested. First, draw a line L, between
z, and - z.. Then, start the integration from z = 0 along a line P, perpendicular to L1. Second,
draw a line L2 between zo and 2 ýr - z,. Finish the integration at z = ;r along a line P2
perpendicular to L 2. This approach attempts to avoid the neighborhoods of the ESs, wherever
they may be located. The lengths of the two perpendicular lines P1 and P2 could be taken as
)r/2; this guarantees that the projections of the two perpendicular lines P1 and P2 on the x-axis
will not extend beyond each other, yet allows the path of integration to get a sufficient distance
away from the ESs. Finally, join the ends of the two perpendicular lines P, and P2 with another
line, thereby completing the modified contour between z = 0 and z = 7r.
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This procedure has been found to be adequate for some complex pairs of arguments a, b, but
not for all arguments. When the magnitudes of arguments a, b get large, some pairs of arguments
cause large variations in the exponential functions involved, and all significance can be lost.

ALTERNATIVE EVALUATION OF THE QM(a,b) FUNCTION

The QM(a, b) function can be expressed in terms of the Q(a, b) function according to
(reference 4, equation (3)):

QM(a'b)=Q(a'b)+exp{ (a-b)2 M-( b)kk exp(-a b) Ik(a b). (96)

Again, the same underflow factor as in equations (76) through (81) appears in the additive term;
additionally, the well-behaved combination exp(-x) Ik (x) is encountered. Therefore, a simple
modification to equations (81) and (82) enables evaluation of QM (a, b) via equation (96). The
apparent danger of small a in the b/a term is partially compensated for, by the fact that

akW 1 s X --> 0. (97)
xk 2k k!

However, for complex a,b if the sequence {exp(-ab) Ik (a b)} has been determined by means of
a recursion using subtraction, form (96) will lose significance for small a : 0. Then, it will be
necessary to employ a power series expansion of

-_, IIk(ab) (98)

about a = 0. The case of a = 0 must be taken care of separately.

A routine for the evaluation of the four quantities

QM (a, b), q, (a, b) = 1 - QM (a, b), log(Q, (a, b)), log(qM (a, b)) (99)

was written and made available with the call

[Q, q, Q log, q log] = Qq log M(M, a, b). (100)

At least one of the four quantities in equation (99) retains significance for all arguments. This
routine can be extended to complex arguments a,b, but is not trustworthy for all complex
arguments.
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EVALUATION OF THE QM(ab) FUNCTION FOR COMPLEX ARGUMENTS
BY MEANS OF INTEGRATION ON THE REAL AXIS

The QM (a, b) function was defined in equation (1) as

SQM(a,b)= d exIM-l(ax). (101)
b a2

The integrand is analytic for all finite complex a, thereby leading to the QM (a, b) function being

analytic in both variables a,b for all finite complex values. The complementary QM function

was defined as

b x 2+a2

qm (a, b) = - Qm (a, b)= fdx x exp IM ;(aax) (102)

o9

By expanding the Bessel function in equation (101) in a power series and integrating term by
term, an alternative expression is obtained (see reference 4, equation (8)):

QM (a, b) = exp a 2 + b 2  ( k+M-1 (b'12/ (103)

This form allows for a useful observation, namely, that the QM (a, b) function is even in both

arguments. That is,

QM (a, b) = QM (-a, b) = QM (a,-b) = QM (-a,-b), (104)

even when arguments a and b are complex. Advantage will be taken of this fact later. However,

direct use of expansion (103) for numerical evaluations leads to underflow and overflow for
moderately large values of arguments a and b, and to cancellation and loss of significance for

complex a,b. Accordingly, an alternative representation of the QM (a, b) function is sought that

will allow its accurate evaluation for large complex arguments a,b.

By repeated integration by parts on equation (101) (see reference 4, equation (4)), another

representation is achieved:

Sa 2  a
QM(a,b)=exp(-A-B) Z tklk(u), where A=- B=- t= u=ab. (105)

k=1-M 2' 2' b'

This expression can be developed as follows:
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QM(a,b) = exp(-A-B)tlM Z t k-I+M Ik(u))= exp(-A-B) t1--M tj JI+,M(u)
k=I-M j=0 (106)
S 1 Z 0.

= exp(-A - B) t'-M-- f dx exp[u cos(x)] E tU cos[(j + 1- M)x].
;T" 0 j=0

The sum onj can developed into a more useful form as

Sj{exp[i(j + 1-M)x]+exp[-i(j + 1- M)x]}

2 j=0

= lexp[-ix(M-1)] [ t exp(ix)]' +lexp[ix(M -1)] Y [t exp(-ix)]j (107)

2 j=0 2 j=0

exp[-ix(M - for Itl < 1, that is, lal < Ibl.

2 1- t exp(ix) 2 1- t exp(-ix)

Substitution in equation (106) yields

Qm(a,b)=exp(-A-B) t-M  I ; dx exp[u cos(x)] exp[ix(M-1)] exp[-ix(M-1)])2---- I •---t e--p(-i- x) 1- t exp(i x)

= exp(-A - B) tP-m ± Jdx exp[u cos(x)] cos[(M-1)x]-t cos(Mx) (108)

r 0o 1- 2 t cos(x)+

b
([a - 2 b IIcos(M x) - - cos((M - 1) x)(axb)2 M )-I f dx exp[-a b(1 - cos(x))]a

=-expl 2 'rk 2. fd
(ay 2;1 0 ~a +) - cos(x)

for lai < bI, where the definitions in equation (105) have been utilized.

In an exactly analogous fashion, the expansion for complementary function qm (a, b) in
reference 4, equation (5), can be developed into an integral representation. The end result is
identical to that in equation (108), except for the minus sign out front and the alternative
restriction now that fbj < Jaj. Therefore, the situation can be summarized as follows: define
integral

b

____2bM 
cos(M x) - b cos((M - 1) x)

exp (a b- b dx exp[-ab (1- cos(x))] a .S(109)

2 a) 2f7rf 0 (aI>J~os

Then (see also, reference 9, equations (C-26) and (C-27))
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qm(a,b)=+I if b<a, (110)

QM(a,b)=-I if IaI<Ib[.

The main issue, then, is the evaluation of the integral I in equation (109) for complex a,b.
Extend the integrand of equation (109) into the complex z-plane by analytic continuation and

define numerator

N(z)=exp[-a b(1- cos(z))] tcos(Mz)- b cos((M- 1) z)j. (111)

This function is entire in z; that is, N(z) has no singularities anywhere in the finite z-plane. Also,
the analytic continuation of the denominator is

D(z) = + - cos(z). (112)

This function D(z) has simple zeros at z zo, where

cos(Z) =l(a+ b or exp(izo) =t a b (113)2 .b a) t b a

as seen from the first line of equation (108). Therefore,

izo =i2n±log+_ (b) =i2rcn± logkb+iangle{b)], (114)

where n is an arbitrary integer, positive or negative. Here, functions log(z) and angle(z) are the
principal value functions. Finally, the locations of the zeros of denominator D(z) are at

zo =2;Tn+ angleb _- i logb . (115)

One of these zero locations always has a real part that lies in [0,)r], which is the region of
integration for I in equation (109). The imaginary part of this zero location can lie above or
below the x-axis, or it can lie right on the x-axis when jaI = Ibi.

In fact, every strip, [nzr, (n + 1)g], of the z-plane contains a zero of denominator D(z).
Furthermore, some pairs of these zeros can lie very close to each other. For example, if z. is near
0, then the zero at - z, is also near 0. Or if zo is near ir, then 2 ; - zo is also near r-. Since the
zeros of D(z) are the simple poles of the integrand N(z)/D(z) of equation (109), direct numerical
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evaluation off by means of equation (109) will run into difficulties when these zeros lie close to
the real x-axis, that is, Ja bI. However, equation (109) is imminently useable when ib/aI is
sufficiently different from unity, because all the poles of N(z)/D(z) are sufficiently removed
from the neighborhood of the path of integration over [O,,r]. Furthermore, equation (109) is much
more attractive than equations (101) or (102) for two reasons: no Bessel functions need to be
evaluated and the range of integration is finite. Also, only one exp function, and no more than
three cos functions, need to be evaluated, all on the real x-axis. In fact, for M = 1, only one cos
function is involved; for M= 2, only two cos function evaluations are required.

At first sight, it might appear that the contour of integration in equation (109) could be
moved away from the pole locations of N(z)/D(z), by moving the contour upward or
downward, into the half-plane away from the nearest pole. This procedure has two drawbacks.
First, the cos functions in equation (109) develop exponential behavior because

cos(x + i y) = cos(x) cosh(y) - i sin(x) sinh(y) (116)

for nonzero y, thereby leading to large oscillating behavior of the integrand with x. Second,
when the poles are close to 0 or ;r, it is not possible to get away from these poles because the
path of integration must start and stop at these points.

To handle the case where lai Ibi, or the poles are close together, the singularities of the
integrand, N(z)/D(z), in equation (109) will be subtracted out and integrated analytically. To
accomplish this task, observe from equation (113) that

exp(i k zo) b; cos(k z.) a (117)

Therefore,

b a'- 2 (a 2 -b 2 )
cos(M zo) - - cos((M - 1) Z) = M- (118)

a o2bm

Reference to equations (111), (113), and (118) then yields

N(zo,) =exp -ab I- I a+ b) 2(a 2 -b 2) =; ex a-b2aM2( ) 19x 2b M  -exp (b)( (119)

Now, express the integrand of equation (109) as

N(x) N(x)- N(zo) N(zo)+ J . (120)
D(x) D(x) D(x)
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The integral of the last term in equation (120) is

"N• ,, N'•, 27r a b

fJdXD(x) = f dx bN(Z) N a2 -b 2 p for b ±a, (121)

where polarity

P= +1 if bal< "b

{ +1 if lal <<Ibl (122)

Here, the integral result is used

fdx I if a 0 [-1,1], (123)

0 a-cos(x) ,rl -+I17jj'jZ--

where both square roots are principal value. (The branch line of the product of square roots is
along the real axis of the complex a plane, between a = -1 and a = 1. The denominator of
equation (123) cannot be replaced by principal-value square root a - 1.)

Combining the results in equations (119) and (121) yields

Kdx N(z°) = / expI - p. (124)
of D(x) - b

Finally, use of this result and integrand breakdown (120) yields, for the second component of

equation (109), the very simple result

1
12 = - p. (125)

2

The first component of equation (109) is given by

( (a -b) 2  m-(b 1 1 'd N(x) - N(zo)I,= exp 2 a 2 f x D(126)

But the analytic continuation of this integrand has no singularities anywhere in the finite z-plane.

The subtraction procedure in equation (120) has accounted for all the poles of N(z)/D(z) in the

25



subtracted term N(zI)/D(z). Therefore, numerical evaluation of the integral in equation (126)
can proceed without fear of encountering any singularities on or near the path of integration.

At this point, equations (109), (125), (126), and (122) yield

{ + Ii - if la< blJa

When this information is coupled with equation (110), there follows the major simplification

QM(a,b)=-1I, q,(a,b)=-+J1 , (128)
2 2

which holds for all relative sizes of lai and Ib!. The only cases where the integral for I, in
equation (126) cannot be used is when a - 0 or b = 0. However, both of these results are already
known in closed form, namely,

QM(0,b) = exp b2-M ,1 I j 2 , Qm (a,0) =1. (129)

The quantities needed for determination of the integrand of equation (126) are given in
equations (111), (112), and (119). The integral in equation (126) is to be used in conjunction
with equation (128) when blbal is fairly near unity. Otherwise, the earlier form in equation (109)
is to be used directly. The reason that equations (126) and (128) are not used all the time is that
form (109) retains full significance even when QM (a, b) and qM (a, b) become extremely small
or large, whereas form (128) retains full significance only when QM (a, b) and q m (a, b) are in
the neighborhood of 0.5. When form (109) would tend to underflow or overflow, the logarithm
of 1 can be easily computed because the leading exponential factor is the major cause of that
problem; thus, log(Qm) and log(qM) can be output in these cases, in addition to QM and qm.

At x = 0 in equations (109) and (126), the exp[-a b (1 - cos(x))] term is 1. However, as x
increases from 0 toward ;r, this term can grow very fast in magnitude, reaching value exp(-2 a b).
To avoid this growth, the polarity of product a b can be switched, if necessary, so that

real(a b) > 0 (130)

before equations (109) or (126) are numerically evaluated. This switch is permissible according
to the results in equation (104). The remaining quantities in the two different integrands involve
cos functions evaluated along the real axis. And the dangers of a small denominator D(x) have
been avoided by employing equation (126) when al P Ib. The only difficult case not covered by
this switch is when Jimag(a b)( is large, because the exp[-a b (1- cos(x))] term will then
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oscillate very quickly with x, even as its magnitude decreases. This will necessitate numerous
integrand evaluations in order to attain an accurate integral result. In the very special case where
arguments a and b are complex, but their product is real, this oscillatory problem will not arise at
all; however, switch (130) is still recommended. The oscillations of the remaining cos functions
in the integrand of equations (109) and (126) are tolerable for moderate values of M.

Another case that requires special treatment is when b = a or b = -a. Reference to equation
(104) and the closed-form result in reference 4, equation (7), yields

QM (a,±a) = + exp(-a') I0(a2)+ 1 (a2) (131)
2 m=

Instead of subtracting out the constant N(zo) in the numerator, as done in equation (120), it
is possible to subtract other factors instead. If so, a useful integral result, relative to equation
(109), is

1 17 cos(M x) - rcos((M -1) x) _ 2r- Iojjl
fJdx I I for rl =1. (132)'0 - r+ -cos(x) 0 for r<l 1

A MATLAB routine was written to incorporate the above developments; it is called
according to

[Q, q, Q log, q log] = Qq log(M, a, b). (133)

This routine outputs the four quantities QM, qM, log(Qm), and log(qM). At least one of these
quantities always retains full significance. However, cases arise where the two quantities that
have to be subtracted from each other are much larger than the difference, thereby losing all
significance in the end result.
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STEEPEST DESCENT EVALUATION OF INTEGRALS

The basic problem of interest here is to evaluate a contour integral

1 f dz = (z), (134)
C

where C is a Bromwich contour extending from - ioo to + ioo. It is presumed that contour C can
be moved so as to pass through a (simple) SP of the integrand T(z). Define

V(z) = log[W(z)]; then '(z) = exp[V/(z)] = exp[V/, (z)] exp[i V/i (z)], (135)

where subscripts r and i denote the real and imaginary parts, respectively. The locations {z } of
the SPs of the integrand T(z) are located where

V'(z,) = 0. (136)

Let C, denote a steepest descent (SD) contour passing through an SP at z,. Then, a very
important property of analytic functions on a path of SD is that

/i(z)= Vi (z,) for z on Cs. (137)

Thus, from equation (135), the angle Vi (z) of integrand T(z) on contour C, remains equal to
its value at SP location z,. Equation (137) is the key to finding the SD contours out of an SP at
Z3.

Define difference function

b(z) =V(z)-Vy(zj) forallz. (138)

Then,

0i(z)=yij(z)-Vij(z) =0 for z on C,. (139)

An alternative way of stating this property is

O(z) is real for z on C•, and •5(z) =- 0. (140)

Then, using equation (138), the integrand TI(z) in equation (135) can be written as

T(z) = exp[Vf(z,)] exp[q5(z)]. (141)
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Substitution in equation (134) yields

I = fdz T'(z) = f dz P(z) =exp[V/(z,)] f dz exp[o(z)]. (142)
C ýC,

On SD contour C•, real function Ob(z) decreases monotonically from the value 0 as z moves
away from SP location z•, in either direction. Although integrand exp[•6(z)] is real on contour
Cs, the integral on z is complex because dz is complex. The integrand of equation (142) at
z=Zs is

exp[eb(z,)] = exp[O] = 1, (143)

which is its maximum value anywhere on contour C,.

The additional factor of exp[V/(z,)] in equations (141) and (142) is a complex constant and
can be ignored during the evaluation of the contour integral in equation (142). However, this
factor may cause underflow or overflow in result L In such cases, the logarithm of I can be
computed according to

log(I) = V(z5 ) + log f dz exp[E(z)]. (144)

Although the log of the integral will produce the standard principal value logarithm, the
remaining term may cause the imaginary part of log(]) to exceed the (-7; ;.] range. In this case,
the imaginary part of log(/) can be subject to a mod operation, which will return it to the range
(-;T, 4T], if desired. Of course, if and when I is finally computed by taking the exp of log(]), this
modification will be irrelevant, since exp(i 2 7r n) = 1 for n integer.

The key property for determining SD contour C, out of SP location z, is, from equation
(139),

Oi (z) =0 for z on C,. (145)

To get started on contour C•, consider the neighborhood of point z,. Near this SP location zs,
the following approximation is very useful:

1 .

O(z) = V(Z)-V(Z/))•(z - z) 2 , (146)
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since V'(z,) = 0, and presuming V,"(z,) # 0. For complex point z1 (near zs) to be on contour
C5 , one must have (in keeping with equation (145)),

1 -V"(z )(zI -z 5 )2 z -f, ) real and positive. (147)
2

That is,

~I =Z -2f-. (148)
z 1 =zs++i (148

These two values correspond to the two directions of the SD contours out of the (simple) SP at z,.

Then, from equations (146) and (147),

O(zI) = -f,, and exp[ob(z)] _exp(-f,). (149)

For example, if

f, = 0.25, then exp[ob(zl)] = exp(-0.25) = 0.78, (150)

versus the SP value of exp[ob(zj)] = 1. Equation (148) can be used to approximately find the first
point(s) on C, away from SP location z5, using f, of the order of 0.25.

The point(s) zr given by the right-hand side of equation (148) will not be exactly on SD
contour C,. Therefore, a local search in the neighborhood of zr will be necessary to locate the
point zj, where 'i (z1) 0. One possible procedure is to let the points (for the +i alternative in

equation (148))

.2f 5
Z+ = z.5 + i •"(z,) exp(±iO), 0 -- = 18 degrees, (151)

ý V/'(Z')10

which, hopefully, lie on opposite sides of contour Cs, and compute

Ob(z) and 4(z+). (152)

Then, since 'i (z) = 0 on C•, solve for the linearly interpolated value of the zero crossing as

01 - Oi (Z-) + Oi (Z+) 0. (153)

O1 (z_)- Oi(z+)

Finally, take the first point away from SP location z, as
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zi =zs +i exp(i01 ). (154)

Then, •zi (z1) = 0 is expected, although not exactly. A similar procedure is used for the -i
alternative in equation (148), which corresponds to the opposite direction of SD out
of the SP at zs.

Once the movement away from the SP location has taken place, a different procedure is in
order. At two close points z,,, z,, on Cs,

0(zn) = b(zn 1 + [zn - zn-l]) _A(zn-) + 0#'(Zn) (Z" - znl). (155)

Presuming qb(z,_ 1) is real, then to keep O(z, ) real, one must take

q5'(z-._) (z,, - z_)- -f , f real and positive. (156)

That is,

Z Zn f f (157)
Zn -n_1 -- Zn- Vf'(

Then, the new integrand value is

exp[qb(z,)] exp[O(zn_ 1) - f] = exp[Ob(zn 1)] exp(-f). (158)

For example, if f = 0.25, the relative amplitude of the integrand at the two close points on C, is
down by exp(-0.25) = 0.78. Equation (157) cannot be used with the SP location zs as a starting
point because Vl'(z,) 0, and equation (155) is not adequate there. An extension of equations
(155) through (157) to second order is given in equations (166) and (167).

As point z,, moves away from SP location zs, y/'(z,,) possibly will become small,
suggesting large increments z, - z,-, according to equation (157). To prevent this, reconsider
equation (148). The magnitude of the first increment away from the SP at z, is

_2f5
z1 -2zsj = (z) - As. (159)

Then, a possible alternative to equation (157) is

Zn = ZnI -As A,(Z"-) -- A (Zn- 1 )* (160)

n-i S--V'(-1 i31
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which retains the direction information of equation (157) and does not allow large increments to
develop. In general, one could use the rule

z = zn_1 - g(z,_1 ), (161)

where Jg(z, 1 )I has the smaller magnitude of the two update terms in equations (157) and (160).

Since new point z, will not lie exactly on SD contour Cs, let

Z+ = Zn-_ -g(z,- 1 ) exp(±iO), 0O- 10 18 degrees. (162)

10

Compute q5(z+) and interpolate as in equations (152) and (153). Finally, take

Zn = Zn, - g(z_ 1 ) exp(i91 ). (163)

Again, q. (z,) 0 is expected, although not exactly. This procedure requires two Oi(z)
calculations at each stage (at z±) instead of one. However, it continually corrects itself by
maintaining Oi (z )=- 0 for each new contour point z,. This recursion procedure is repeated
until the real part of O5(z) is sufficiently negative that the integrand, exp[q(z)], in equation (142)
is negligible or below a specified tolerance.

Once the SD paths out of an SP location have been determined, that is, the sequence of
values {z,, } on both sides of the SP, a numerical integration procedure is in order. The sequence
of points {z, } will be close to the path of SD, but they will not lie directly on it. Nevertheless,
analytic integration along the piecewise linear path afforded by locations {z, } would yield the
exact same result for the integral as for the SD path, according to Cauchy's theorem. However,
since an analytic integration is not possible in general, some numerical integration rule must be
employed on the set of complex locations {z, } and the corresponding complex function values,
{exp[ob(z,)] }. For example, the parabolic interpolation and integration procedure for three
adjacent complex locations z1, z2,z 3 is given by

Z 2 1 _z. Z 2 - ZI, Z 3 2 = Z 3 -Z 2 , Z 3 1  Z 3 - Z1 ,

3
r -- z 31 (2z21-- z 32 ), r2 = z31, r3 = z31 (2z32 -z21), (164)

Z 2 1  Z 2 1 Z 3 2  z32

1
sum =[Ir f(zl)+r2 f(z 2)+r 3 f(z 3 )1,

6

32



where f(z) is the function to be integrated. When the three points z1, z 2,z 3 all lie on a straight
line and are equally spaced, that is,

z21 = h, z32 =h, z 31 =-2h, h complex, (165)

then r, =2h, r2 = 8h, r3 = 2 h, and equation (164) reduces to Simpson's rule with complex
function samples. However, the sequence {z,, } yielded by recursion (163) will generally lie on a

curved series of points near C, in the z-plane, necessitating the use of the general rule in

equation (164).

Since the spacing between sample points {z, } is not zero, the numerical procedure
employing equation (164) will not give an exact result for the desired integral. However, by
sampling halfway between the existing points and evaluating the integrand at these intermediate
points, re-evaluation of the sum by means of equation (164) (at twice as many points) will
improve the accuracy of the approximation. There is no need to duplicate the function
evaluations that have already taken place; only the function values at the halfway points need to
be evaluated. This halving procedure can be repeated until two consecutive approximations for
-the integral of interest differ by less than some user-specified tolerance. The amount of storage
is not excessive, although the number of stored locations and function values doubles with each
stage of this procedure.

According to equations (135) and (138), O(z) is the difference of two logarithms. During
the tracking of the SD contour according to equations (162) and (163), it is possible that the
branch line of the principal value logarithm log(z) may be crossed. This will yield an undesired
jump of ± 2 z in the imaginary part of the logarithm. This jump would grossly affect the
interpolation procedure in equations (152) and (153), because Ai (z) must be maintained near
zero on contour C,. Since the z increments along contour C, are small, according to equation
(163), the simplest way to circumvent this discontinuity problem is to always force function
q$(z) to return an imaginary part in the range (-z, z]. If function O(z) contains other principal

value functions, such as sqrt(z), this same correction must be incorporated. It is not necessary to
modify function ,(z), except possibly as noted under equation (144).

If the expansion of O(z) is used to second-order, instead of the first-order expansion in

equation (155), that is,

b(zn) - (z._) + 0'(z_,,) (zn - z,,-) + - O"(znA1 ) (zn - Z,(16
2

there follows the alternative recursion
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Z = - '(Zn-l) -- 12 f"(z 0(Z_)) 0. (167)

(As q'"(z,_) -- 0, this rule approaches that in equation (157).)

When equation (136) is solved for the SP locations, namely,

V'(z,) = 0, (168)

there may be many solutions, depending on the nonlinearity of function yl'(z). Some of these
SP locations may be useless; for example, those SD paths that lead into the locations of essential
singularities or zeros may not be useful at all, or they may have to be augmented by an additional
path leading over other SP locations on the way to the desired eventual destination in the z-plane.
In other cases, it may be necessary to use more than one SP passage to piece together a complete
path going over the desired extent in the z-plane. These alternatives can be discovered only by
plotting the SD paths for the various SPs and choosing the desired one(s). Even then, some of
the contour integral results for I may lead to obvious results and not be useful. Some
experimentation is required to find the right combination(s) for the particular problem at hand.
However, as noted in equation (144), underflow and overflow can always be kept under control,
and very accurate numerical results can be obtained.

EXAMPLE OF NON-CENTRAL CHI-SQUARED VARIATE

The non-central chi-squared variate has the PDF (see equation (9))

S M-1

( 8 ) 2 ) (,6 2au) for u>0, (169)

where a and /f are real and positive. The corresponding MGF is

A) =du exp(A u) p(u) = - A-J exp A for 2,. = real(2) < a, (170)a) (a- 22

while the EDF is

e(v)=Jdu p(u)=QM(/3,6 V2 av) for v>0. (171)
V

The (analytic continuation of the) MGF u(A) has an ES at 2 = a.
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Instead of trying to evaluate the EDF by means of integral (171), an alternative is available
by using the inverse Laplace transform result

p(u) Jd2 exp(-u2) u(2), (172)
i2z 2r

where Bromwich contour C1 must initially be in the region of analyticity of the MGF, namely, to
the left of the ES at 2 = a. Then, for v > 0, the EDF is given by

e(v) = fdu p(u) = dAp(2) Jdu exp(-ui ) = I Ji /7 u(2) exp(-v2), (173)

where contour C2 must now pass between the pole at A = 0 and the ES at A = a. The additional
restriction is required for the latter u integral in equation (173) to converge, that is, 2, > 0.

Now substitute equation (170) into equation (173), and equate the result to equation (171),
thereby getting an explicit integral relation for the generalized QM function as

Q,(I6, 2av i2) f -' exp(-vlA) 1 A exp (174)

Now make the substitutions

b 2
a 8' /1= a (a and b real and positive) (175)

to get the form

QM(a,b)=i- -- -exp(-v2) 1 - 2vA expb - (176)

Finally, let 2 = z b and get2 v

Q,(a b) I ff dz exp(-Bz) (1 - z)M exp 1Az) (177)
Q ' i2C•C3 z

where

A=a 2/2, B=b 2/2, (178)
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and contour C3 must pass between the pole at z = 0 and the ES at z = 1 of the integrand of
equation (177). Under the identification

W(z) = I exp(-B z) (1- z)-M exp A , (179)

the integral of interest takes the form

QM(a,b) = 1 J, 1 f dz T(z). (180)

i27r C3

The residue of '(z) at z = 0 is obviously 1, as seen from equation (179); that is, Res(0) = 1.

Since B is real and positive, the contour C3 can be moved far into the right-half z-plane, where
the integrand TP(z) tends to zero. The only singularity encountered in this movement is the ES
at z = 1. Therefore, I = -i 2 z Res(1), where the minus sign is due to the negative (clockwise)
sense of the encirclement of the ES at z = 1. Thus, equation (180) yields the very useful
observation that

Res(1) = -QM(a,b). (Also, Res(0) = 1.) (181)

The situation can now be summarized as follows. Any contour C that encircles just the pole
at z = 0 (in a positive sense) will yield the value 1 for the integral

J -- dz P(z). (182)
i2;f c

Also, any contour C that encircles just the ES at z = 1 will yield the value - QM (a, b) for J. Any

contour C that encircles both singularities will yield the value 1 - QM (a, b) for J. These observa-
tions will allow easier interpretation of the numerical results for the SPs and associated SD paths
to be presented in the examples below.

According to equations (135) and (179), the function

Az
Vt(z) = log[T(z)] = -B z + • - log(z) - M log(1 - z), (183)1-z

where A and B are given by equation (178). This function in equation (183) uses two principal
value logarithms; therefore, the correction procedure on Ob(z) = Vt(z) - V,(zs), outlined two
paragraphs below equation (165), must be employed. Then,
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A 1 M Bz 3 +(M+1-2B) z 2 +(B-A-2-M)z+I
) (lz) 2  z l-z z(1-z) 2  (184)

2A +1 +IM
(l-) z2  (lz) 2

Saddlepoint locations {z, } of integrand I(z) are determined by the three solutions of the cubic
equation

3 2

Bz +(M+1-2B) z• +(B-A-2-M) z, +1=0. (185)

Although this cubic equation has an analytic solution, it is not a simple one, even for low-order
integers M. Rather, given numerical values of A, B, and M, the three SP locations {z, } can be
determined numerically. It is then necessary to determine the SD contours leading out of each of
these SP locations, and to determine which of these contours are useful, according to the
discussion accompanying equation (182).

ForA and B real and positive, it is seen from equation (179) that, on the real axis, W(z) is
negative to the left of the origin and has a single maximum in that region; that is, its magnitude
has a single minimum. In the region between z = 0 and z = 1, '(z) is positive and has a single
minimum. To the right of z = 1, the magnitude of T(z) has a single maximum; observe that the
value of the ES term rapidly approaches zero as z -> 1 +. These three locations correspond to
the SP locations for this case. However, the SD directions for the third SP are along the real axis
of the z-plane and one path heads directly into the ES at z = 1, making this SP useless.

For the SP located between 0 and 1, on the other hand, the SD paths start out perpendicular
to the real axis, and then both bend to the right, due to the exp(-B z) term. This is contour C3

in equation (180). The only singularity encircled (in the negative sense) by this contour is that at
z = 1, yielding, upon use of equation (181),

1 f dz I(z) = -Res(1) =QM(a,b), (186)

i22/ C3

which is consistent with equations (180) and (182).

For the SP location to the left of the origin, the SD paths also start out perpendicular to the
real axis, and then both bend to the right, again due to the exp(-B z) term. Call this contour C4 .
Therefore, both singularities of TI(z) are now encircled (in the negative sense), leading to a
value for the integral of

1 Jdz W(z) = -Res(0) - Res(1) = -1-[-QM (a, b)] = QM(a,b) -1. (187)

i2f3
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This is consistent with equation (182). Thus, contour C4 through the leftmost SP location yields
not QM (a, b), but rather QM (a, b) - 1. This can be a very useful observation when QM (a, b) is
very close to 1. The complementary function

qm (a, b) = I - QM (a, b) (188)

is the cumulative distribution and can be evaluated very accurately far out on its tail values by
means of contour C4, whereas its evaluation by the difference in equation (188), coupled with
contour integral (186) on contour C3, could have no significance at all. This example illustrates
that some investigation is in order for the various SPs and their associated paths of SD, in order
to find out which is the most useful path for the problem at hand.

NUMERICAL EXAMPLES

A series of numerical examples of equation (179) is now presented that will further

demonstrate the utility and futility of some of the various SPs. The first case is

M=3, a=1.1, b=2. 1; z, =-1.2866, 0.30086, 1.1716. (189)

This case bears out all the observations made above. The SP locations {zs } will be labeled 1,2,3
in the order presented here. Also, QM (a, b) will be abbreviated by Q in these examples.

The second case is

M=3, a =1.1, b=21; z, =-0.00461, 0.94054, 1.0459. (190)

Since b is much larger then a, there follows Q = 3.001e - 85 - i 1.352e - 101, which was

obtained by integration along the path passing through the second SP (at z, = 0.94054). This
path encircled the ES in the negative sense, thereby yielding equation (186) again. The path
through the first SP encircled both singularities in the negative sense, and should yield
- Res(0) - Res(l) = -I + Q, which is virtually -1. The numerical integration confirmed this
result; however, this is not a useful path or result due to the loss of significance. The third SP
was useless, with an SD path leading into the ES.

The third case is

M=3, a =21, b=l .1; z, =-21.725, 0.00445, 17.109. (191)

Since a is much larger than b, there follows - q = -1 + Q = -1.047e - 91 - i 3.198e - 107, which

was obtained by integration along the path passing through the first SP. This path encircled both

singularities in the negative sense, yielding - Res(0) - Res(l) = -I + Q = -q, as expected. The
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path through the second SP encircled only the pole at the origin in a positive sense, yielding
integral value Res(0)=1. This is correct but not useful. The third SP was useless.

The expression for QM (a, b) in equations (177) and (178) is analytic in a and b for all a and
b. Therefore, by use of analytic continuation, the integral expression can be used for complex
values of a and b. Accordingly, the fourth case is

M=3, a=1.l, b=2.1+i2;

z, = 0.1425 + i 0.1240, 0.6374 + i 0.8624,1.1738- i 0.0362. (192)

Since b is complex, the SP locations can now lie in the complex z-plane, not just on the real axis.
The path through the first SP starts and ends in the fourth quadrant and encircles only the pole at
the origin in a positive sense; the value of the integral is 1, which is not a useful result. The path
through the second SP encircles both singularities in the negative sense, yielding integral value
Q -1 = -q =2.1123 - i 4.6039. The path through the third SP heads into the ES and is not useful.

The fifth case is

M=3, a=1.l+i3, b=2.1/a; (193)

zs=0.0495-i 0.2181, 0.2505+i 0.9875, 15.831-i 12.742.

Here, both a and b are complex, although their product is real. The path through the third SP
encircles both singularities in a positive sense, yielding value Res(0) + Res(1) = 1 - Q = q, which
is a useful result. The path through the first SP starts in the second quadrant and ends up heading
into the ES at z = 1; by itself, this is not useful. However, the path through the second SP comes
out of the ES and heads off into the second quadrant. The combination of these two paths
encircles the pole in the positive sense, but does not encircle the ES, though these two SD paths
both enter into the ES at the same angle. Therefore, the sum of the two integrations obtained by
using the combination path is equal to Res(0)=1. This is an interesting combination of SD paths,
but it does not lead to a useful result.

The sixth case is

M = 3, a = 10, b = i 10; z, = 0.009615, 1.0352 ± i 1.0042. (194)

The path through the first SP encircles the origin, yielding value Res(0)=-1. As above, the

combination of the two paths through the two remaining conjugate SPs encircles both
singularities in the positive sense, yielding Res(0) + Res(1) = 1 - Q = q = -0.026941. The path
through the upper SP stays in the upper-half z-plane, while the path through the lower SP stays in
the lower-half z-plane.
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The seventh case is

M=3, a=10+i, b=0.5+ilO;

z, -0.00965- i 0.00048, 0.8848 +i 1.001, 1.1849- i 0.9926. (195)

Now, both parameters a and b are complex, and the SP locations have no symmetry properties.
The path through the first SP encircles just the origin, yielding integral value 1 as usual. The
path through the third SP starts in the fourth quadrant and works its way toward the positive real
axis; it ends up in the ES location, but the function values get so small that computation ceases at
the specified tolerance before that could happen. The path through the second SP starts near the
positive real axis and ends up in the second quadrant; it starts at the ES location, but the function
values are again too small. Each of these last two contours, by themselves, do not yield a useful
result. However, the combination of the two paths encircles both singularities in the positive
sense, leading to integral value Res(0) + Res(l) = 1 - Q = q = 1.7196 - i 5.2731. Thus, here is an
example where a combination of two SD paths must be used to attain a useful result. Taken
separately, none of the three SD contours through the three SPs yield useful integral results
relative to QM (a, b) or qm (a, b). In fact, it is conceivable that in some cases, it may be
necessary to use a combination of all three SPs and their respective descent paths to achieve a
meaningful integral result.

The eighth case is

M=1000, a=l.l+i3, b=2.1-i2,

z= -10.602 - i 237.77, 0.00100-i 7.5455e -6, 0.99611 + i 0.0033.

The SD paths through the first SP encircle both singularities in a negative sense. However,
V/(z,) = -4473.2 + i 1.0377 has such a large negative real part that the factor exp[V/(z,)] in
equation (142) underflows. In this case, it is necessary to resort to the procedure mentioned in
equation (144); the end result is that log(!) = -4472.2 + i 2.5598, which retains significance for
further computations. Use of the second SP leads to encirclement of just the pole at the origin
and a known value of 1 for the integral. The path associated with the third SP leads into the ES
location and is not useful. This example illustrates that large values of Mcan be handled by this
combined SP and SD procedure, although it may be necessary to output a logarithm of the
integral instead of the integral value itself.

The basic difficulty with this approach is the presence of the ES. The ES acts like a
directive "black hole," attracting any nearby SD path directly into itself. The SD paths through
the three SPs are adversely affected by this effect, making interpretation of these results very
difficult and virtually impossible to automate. Visual inspection of all the SD paths is required
in order to make the correct decision about what path(s) to use. Integrand (179) has no zeros
anywhere in the finite z-plane; therefore, the SD paths cannot terminate in zeros, fortunately.
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AN ALTERNATIVE STEEPEST-DESCENT APPROACH FOR QM(ab)

The presence of both a pole and an ES in the integrand P(z) in equation (179) causes
difficulties in interpretation of the SPs and their associated paths of SD. It is desirable to have an
alternative integrable form that does not have the ES. Such a form can be obtained as follows.
In the top line of equation (108), let y = -x in the latter half of that equation. Then, for
a • 0, b : 0, jal < Ibl, the resultant two halves of the equation can be combined into the form

Qm(a, b) = ( a2 +b2 )(b) m 1 I dr exp[a b cos(x)] exp[i x (M - 1)]

Q(ab=expI 2 " 2-r -, 1 exp(-i x)

b (197)

S1 ))(blm-' I 7 exp[-ab[1-cos(x)]+ix(M-l)]=exp -(a-b) 1 drf

- 12- exp(-i x)
b

Define the analytic continuation of the numerator of the integrand as

N(z) = exp[- a b [1 - cos(z)] + iz (M - 1)], (198)

which is an entire function with no zeros in the finite z-plane. Also, define the denominator

D(z) = 1- -- exp(-i z). (199)
b

Observe that N(0) = 1, D(0) = 1 - a/b, and

N(z + 2 g n) = N(z), D(z + 2)r n) = D(z) for n = 0, + 1, ± 2,...; (200)

that is, both functions have period 2n" in the direction of the x-axis. Then, the integrand of
equation (197) is

W(z)= N(z) (201)
D(z)

There follows

V(z)= Log T(z) = -a b [1-cos(z)]+ iz (M-1)-log1-b exp(-iz)j + i27rn, (202)
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where the two functions, Log( ) and log(), are the general logarithm and principal value
logarithm, respectively, while n is an arbitrary integer. Also,

yi'(z) = -a b sin(z) + i (M - 1) - i a/b exp(-i z)
1 - a/b exp(-i z)

= -a b sin(z) + i (M - 1) - i I - D(z) (203)

i D(z)= -a b sin(z) + i M - Di--•

D(z)-l

yi"(z) = -a b cos(z) D(z) - 1(204)D 2(Z)(24

The SP locations {z, } of the integrand W(z) in equation (201) are at the solutions of the

equation V'(z,) = 0. Let e = exp(-iz,). Then, from equation (203),

_ab1/e-e i
-ab +iM- = 0, (205)

i2 1 - (a/b) e

which can be simplified to

a 2 be 3 -a (2M+b2 )e 2 +b(2M-2-a2 )e+ab2 =0. (206)

Although this cubic in e can be solved analytically, the solution is very complicated, even for
small values of integer M. Instead, solve this cubic numerically for the three values of e. Then,

z, = i Log(e) = i log(e) + 2; fn, n = 0, + 1, + 2,..., (207)

gives the locations of the three SPs in each vertical strip of width 2 ;" in the z-plane.

The poles of integrand TP(z) are located where D(zp) = 0; from equation (199),

aexp(-izp)=l, exp(izp)=b, izp =LogJb)=log(b)+i2;n,
b b ~ b b)
zP= 2 )n-n+ angle(b)-/lOgba. (208)

This pole location is independent of M. There is only one pole in each 2 7c vertical strip. And
since IaI <Ibi, this pole location lies above the real axis of the z-plane. The residue of T'(z) at
this pole location zp is
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exp -ab b I (a + b) am'M-1
N(zp) .2Lab a2b +j lb exp1 (a- b) 2  (209)
D'(z,) a b = bj~ (2p~

D (Zp) I -- -

ba

Therefore, from equation (197),
1 12 bm- N(z)

exp - (a-b) dz - 1 (210)

if contour C encloses just the pole at zp, in a positive sense.

LOCATIONS OF THE HILLS AND VALLEYS OF INTEGRAND P(z)

As y -4 ±+, the dominant quantity in N(z) in equation (198) is

g(z) - exp[a b cos(z)], (211)

as will be seen below. This function has period 2 7-. Let

a b = p exp(i/f), (212)

where p is positive real and 81 is real. Then,

g(z) = exp L{ exp(ifl) {exp(iz) + exp(-iz)}]
LexpP exp(/i6 + ix-Yy) expfj (i-ix+ y)(213)

As y --> +o, then

g(z) exi{LL exp[ i 0 - x] exp(y) (214)

which dominates exp[i z (M- 1)] = exp[(i x - y) (M - 1)]. Therefore, the centers of the hills of

g(z) at + i oo (the location of fastest growth of the magnitude) are at x coordinates

XH+ = ,6 = Angle(a b) = angle(a b) + 2 if n, (215)
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where the two functions, Angle( ) and angle(), are the general angle and principal-value angle,
respectively. Also, the centers of the valleys of g(z) at + ij a (the location of fastest decay of the
magnitude) are at

xV+ =3 P + r = angle(a b) + ;± + 2 z n. (216)

On the other hand, as y -> -cx, then

g(z) -exp A exp[i/(6 + x)] exp(-y). (217)

Now, the centers of the hills at - i oo are at

XH = -,8 = -Angle(a b) = -angle(a b) + 2 z n, (218)

while the centers of the valleys at - i oo are at

xv_ = ;T -f8 = -angle(a b) + r + 2 7 n. (219)

MOVEMENT OF CONTOUR FOR QM(ab)

The original contour of integration for Qu (a, b) in equation (197) is a finite contour along
the real axis of the z-plane, from - r to z. However, since the integrand of equation (197) has
period 2 r, the range of integration can be taken as x, to x, + 2 gr, where

x, = angle(a b) - K; (220)

see equation (216). Then, two vertical lines can be drawn from x, and x, + 2 ff toward + i 00,
right into the centers of two adjacent valleys. The combination of these two vertical lines and the
portion of the real axis between them is a U-shaped contour, to be denoted by Cu. Integration
down the left vertical line exactly cancels integration up the right vertical line, due to the
periodicity of the integrand. Thus, there follows, from equations (197) through (201),

QM(a,b) = exp -I•(a -b)2 Mj 1 I fdz N(z). (221)2zC D(z)

Now, infinite contour Cu can be moved upward so as to pass through a convenient SP(s);
call this new contour C,. If the pole of the integrand at zp (which is in the upper-half z-plane
for the present case of lal < Ib) is crossed during this contour movement, then use of equation
(210) reveals that
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QM(ab)=exp-l (a-b)2X bI- -L 1 dz N(z) (222)
H a g C, D(z)

This result is useful for evaluating complementary function qm (a, b) = 1 - QM (a, b). However, if
the pole at zP is not crossed when moving contour Cu into C•, then the additive 1 on the right-
hand side of equation (222) must be removed, and a direct integral relation for QM (a, b) results.

In some cases, contour C, may not look like a U-shaped curve. It may be necessary to use
two SPs and piece together two steepest-descent contours that enter a valley at - i 00 with an
x-coordinate midway between the locations of the original two adjacent valleys of Cu at + ice.
Of course, contour C, would still start in the left valley at x, + i ci and end up in the right valley
at x, +2 2- + i oo. Whether equation (222), with or without the additive 1, should be used
depends on the exact positions of the three SPs and the pole of integrand 'P(z).

The development above presumed that faf < Ib, meaning that pole location z, lies in the
upper-half z-plane. Keeping a and b fixed for the moment, contour Cu in equation (221) can be
moved downward in the z-plane, according to Cauchy's theorem, without changing the value of
the integral (221) for QM (a, b); call this new contour Cd. Then, since QM (a, b) is analytic in
both a and b, the values of these two parameters can now be varied as desired, provided that the
pole location does not cross Cd; this can always be accomplished by sufficient prior movement
of Cd. Thus, if contour Cd remains below the pole location, the expression

QM (a,b) = expr-2 (a- b)2 (z) (223)
k~2 ) a 27sr Cd D(z)

holds true for all a and b, not just lal < Ib. Contour Cd can now be moved so as to pass through an
SP(s), resulting in a modified contour C,. Again, relation (222) remains valid if the pole location
is crossed while Cd is moved into C8, whereas the additive 1 on the right-hand side is dropped if
the pole location is not crossed during movement. Thus, relation (222) can be used for all values
of a and b, provided that this "crossing rule" is adhered to. In no case does contour C, in equation
(222) pass through the pole location zp , because SD paths always automatically avoid poles.

SELECTION OF AN APPROPRIATE SADDLEPOINT

Equations (206) and (207) give the locations of the three SPs of integrand 'I(z) of equation
(201), while equation (208) gives the pole locations. When the SD paths through the three SPs
are plotted, a wide variety of contours is obtained, making it very difficult to decide what
combination to select, without making a detailed observation of the particular paths. This makes
automation of the QM (a, b) evaluation very difficult.
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Typically, one SP is associated with the pole and always lies in close proximity to the pole
location. The SD path through this particular SP surrounds the pole and frequently comes and
goes into the same valley at infinity. Thus, the integral along this SD path always gives the
values ± 1 and is, therefore, useless. The SD paths through the two remaining SPs sometimes
have to be combined, to yield a complete path leading between two adjacent valleys. Yet, on
other occasions, one SP will connect two valleys at z = +i c, while the remaining SP will
accomplish the desired task of connecting two adjacent valleys at z = +i cx. These complications
require that an alternative tack be taken.

From this point on, the complex parameters a and b of QM (a, b) will be restricted so that
their product is real. Then, equation (216) reveals that there are valleys at + i 0 located at x-
coordinates ± zr. Instead of trying to connect these two valleys at z = + i c by means of an SD
path through an SP(s), a simpler approach will be adopted. Namely, a horizontal path of
integration (not the real axis) through an "appropriate" SP over the real interval (-ir, ir) will be
employed; the vertical legs of the paths reaching to z = +i o can be dropped, because the integrals
along these paths cancel each other. The appropriate SP is that one with the minimum magnitude
of the slope of the SD path as it passes through the SP. This automatically eliminates those SPs
that connect two different valleys at z = ± i o, because the slope for those SPs is nearly vertical.
(Other alternatives were tried, but none proved to be unambiguous for all the cases tried.) Of
course, this horizontal path of integration is no longer the path of SD through that SP, but it is still
a path of descent. The peak magnitude of the integrand on that horizontal path occurs right at the
SP location, which is a very desirable condition. This horizontal path through the SP does not
eliminate oscillations in the real and imaginary parts of the integrand, but it does tend to minimize
oscillations. This switch in paths from SD to a horizontal path also eliminates the considerable
complex numerical effort associated with determining the actual SD path through a particular SP.

Since this horizontal path of integration might intersect or come close to the pole location,
indent the path with a portion of a small circle centered at the pole location, where and if
necessary, thereby avoiding a close approach of the integration path to the pole. Then, use a
numerical integration procedure on the horizontal path (and another numerical integration
procedure on the indented circular portion if present) such as MATLAB's quadf routine. This
latter routine is an adaptive Gauss-Lobatto integration procedure with high accuracy and
efficiency for smooth integrands. By breaking the integration path into two pieces (when
necessary), the integrands in the two quadc applications can be kept as smooth functions.

This procedure uses all the information about the locations of the three SPs and the pole, but
avoids having to evaluate the detailed SD paths from any of the SPs. There is no analytical
solution for the SD paths through any of the SPs. Examples of the integrand on the horizontal
path reveal that moderate oscillations are encountered as the magnitude of the integrand decreases
from its peak value at the SP; however, severe oscillations that would cause cancellations and loss
of significance are not encountered. Also, underflow and overflow can be controlled by resorting
to the factorization employed in equations (142) through (144).
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DETERMINING IF AN SD PATH PASSES UNDER OR OVER A POLE LOCATION

It has been seen above that a key issue in evaluating the contour integral is whether a
particular SD path passes under or over a pole location in the complex z-plane. This
determination can be accomplished without drawing all the various contours and can be
automated as follows. Let the known locations of all the SPs be denoted by {z, }, s = 1: S.
Also, let C, denote the s-th SD contour, which passes through z,. Then, from equation (137),

Vi (z) =i (z,) for z on Cs, s = 1 : S. (224)

The pole location, zp = XP + iyp, must be known; for example, see equation (208). In order to
determine if the SD contour C, passes under or over this location, set

v'i (Xp + i Yp') = v/i (Zs) (225)

and solve for Yps" This solution must be conducted for each s value of interest. If y, > 0, then
SD contour C, passes above the pole location. If yp, < 0, then C, passes below the pole
location. Solution y, can never equal zero because SD paths automatically avoid any poles.

If there are multiple real solutions for yp, in equation (225), it will be necessary to trace the
detailed SD paths out of the SP of interest to determine exactly where the SD paths go. The large
variation of path possibilities makes this computation unavoidable.

In terms of the auxiliary function 0(z) defined in equation (138), it is necessary to introduce
a more explicit notation, namely,

0•(z) -'(z)- V(zj) fors=1:S. (226)

Then, the imaginary parts become

0,s(Z)=Vj(z)-V•(Zs fors=1:S, (227)

and, in particular,

i(Xp+ i yp,) = (Xp +iyp, ) -q(z,) fors=1:S. (228)

Therefore, solution of equation (225) is equivalent to solving

0'i (xp +iyp))=0 (229)

for yps for those values of s of interest.
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SUMMARY

A procedure for evaluation of the generalized Q, (a, b) function, with complex arguments
a, b, has been derived, which keeps underflow and overflow in check. A MATLAB routine is
listed in the appendix. It is limited to the case where the product a b of its arguments is real.
However, the procedures detailed in this report could be used to extend the routine to general
complex arguments.

The complementary function qm (a, b) = 1 - QM (a, b) often occurs in calculations for a

practical problem. Accordingly, it is necessary to also calculate and supply this quantity. In

fact, in general, the four quantities

QM, q,, log(Q,), 1og(q,) (230)

should all be output from the general routine. This guarantees that at least one of the four
complex quantities retains significance for all argument values. This situation is similar to the
case in MATLAB, where routines for both the error function erf( ) and the complementary error
function erfc( ) are furnished. All of these features are included in the final routine for the
QM (a, b) function. In particular, the call is

[Q,q, Q log, q log, j,n] = Qq(M, a,b) , (231)

wherej = 1 or 2 indicates whether Qlog or qlog is more accurate, while n is the number of final
evaluations utilized for MATLAB routine quad&.

A general review of steepest descent procedures, including an accurate prescription for
numerically evaluating the paths of steepest descent out of a saddlepoint, has been presented.
By factoring out the value of the integrand at the saddlepoint, underflow and overflow can be
controlled by computing the logarithm of the specified quantity. If desired, the exponential of

this logarithmic quantity can then be taken as the last step of computation; of course, this
exponentiation could itself underflow or overflow.
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APPENDIX
PROGRAM LISTING FOR QM(a, b)

function [Q q Qiog glog j n] = Qq(M,a,b) % Only for product a b real.
% QM(a,b) = int(b,inf) dx x (x/a)A(M-l) exp(-x^2/2-aA2/2) I[N--1] (ax).
% qM(a,b) = 1 - QM(a,b) is the complementary QM function.
% j=l: Qlog is most accurate; j=r2: glog is most accurate.
% n is the number of function evaluations in the calls to quadl.
global m p r cs R zp yy

tolrel=le-6; % Relative Tolerance on quadl integrals.
R=.2; % Threshold for SP & pole separation.

j=l;
n=O; % Number of function evaluations in quadl.

if(b==O) Q=1; q=O; Qlog=O; qlog=-Inf; return, end

if (a==O)
c=b*b/2; t=l; s=l;
for k=l:M-l

t=t*c/k; s=s~t;
end
Q=exp(-c)*s; q=l-Q; Qlog=imag_limit (-c+log(s)); qlog=log(q);
return

end

m=M;
p=a*b;
if(abs(imag(p))>abs(real(p))*le-14) error('a*b is not real.'), end
p=real (p); % Eliminate imag round-off error.
r=a/b;
zp=-~i*log~r); % zp = pole location.

e=roots(l[p 2*m-2-p*r -p-2*m*r p*r]);
zs=-i*log(e); % 3 SP (saddlepoint) locations.
[d, ki=min (abs (e-r)) ; % [d, k]=min (abs (zs-zp));

zs~k=[];% Eliminate SP closest to pole.

ang=.5*(pi-angle(psi2(zs))); % Retain the SP
al=min(ang(l),pi-ang(l)); % with the lower
a2=min (ang (2) ,pi-ang(2)); % magnitude-slope
k=1; if(a2<al) k=2; end % of the POSD
zs=zs (k); % through the SP.

cs=p*cos(zs)+i*m*zs-log(exp(i*zs)-~r);
faclog=-.5* (a*a+b*b) -(m-l) *log (r) -log (2*pi);
xp=real (zp); yp=imag (zp);
xs=real (zs); ys=imag (zs); yy=ys-yp;
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if (abs (yy) >=R)
[int,n]=guadl (@f, zs-pi, zs+pi,tolrel);

else
sq~realsqrt (R*R-yy*yy);
xl=xp-sq; x2r=xpH~sq;
zl=x2-2*pi+i*ys; z2=xl+i*ys;
fm=max(abs(f([zl z2])));
if (abs (xs-xp) >=sq) frn=max (fin,1); end
tolabs=fm*tolrel;
[intl,nl]=quadl(@f,zl,z2,tolabs);
tp=acos (abs (yy) /R);
t~linspace(-tp,tp,5); % 5 samples in angle.
big=max (abs (g (t)));
gtolabs=tp*big*tolrel; % Absolute tolerance on quadl g integral.
[int2,n2V~quadl(@g,-tp,tp,gtolabs);
int=intl+int2; n=nl+n2;

end

if (yy<O)
Qlog=imag limit(faclog+cs+log(int));
Q=exp(Qlog); q=l-Q; qlog=log(q); j=l;

else
qlog=imag limit (faclog+cs+log (int) +i*pi);
gr=exp(qlog); Q=1-q; Qlog=log(Q); j=~2;

end
if (imag (a) =0)

Q=real (Q); q=~real (q); Qlog=real (Qlog); qlog=real (qlog);
end

% keyboard

function w =f(z) % f(zs) =1
global m p r cs
w=exp(p*cos(z)+i*m*z-log(exp(i*z)-r)-cs);

function w = g(t)
global m p r cs R zp yy
c=cos(t); s=sin(t);
u=R* (s+i*c);
if(yy<0) u=conj(u); s=-s; end
z=zp+u;
w=R*(c-i*s) .*exp(p*cos(z)+i*m*z-log(exp(i*z)-r)-cs);

function w = psi2(z)
global p r
e=exp(i*z);
w=-~p*cos(z)-r*e./(e-r). 2;
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